Postural modifications and neuronal excitability changes induced by a short-term serotonin depletion during neonatal development in the rat.
نویسندگان
چکیده
Serotonin (5-HT) plays an important role both in the development and in the recovery of locomotion after spinalization in vertebrates. We investigated the contribution of the serotonergic system to the maturation of the lumbar motoneurons and networks in the neonatal rat. A 5-HT synthesis inhibitor, p-chlorophenylalanine (PCPA), was administered daily from the first postnatal day (P0) onward. This protocol depleted serotonin in the spinal cord within 3-4 d, as demonstrated by immunohistochemistry. PCPA-treated rats exhibited postural changes characterized by lesser flexion at the knee and ankle levels and lesser extension of the hip. Posture was asymmetric, suggesting possible deficits in the interlimb coordination. Intracellular recordings were made at P3-5 from motoneurons innervating different hindlimb muscles, using the in vitro brainstem-spinal cord-nerve-attached preparation. In PCPA-treated rats, the conduction velocity of motoneurons was increased, and their excitability was decreased (because of higher rehobase and input conductance) compared with sham animals. In accordance with postural observations, changes were more pronounced in hip extensor/knee flexor than in ankle extensor motoneurons. The maturation of repetitive firing properties was stopped by PCPA treatment, although PCPA, applied in vitro, had no effect on membrane properties. The spontaneous endogenously generated activity, which is a characteristic of immature networks, was increased in PCPA-treated rats, suggesting that developing lumbar networks are sensitive to 5-HT levels. Serotonin may play a critical role during development in regulating the balance between the excitability of motoneurons and that of interneurons. Interneuronal excitability is crucial for the activity-dependent development of spinal cord networks.
منابع مشابه
Effects of Neonatal C-Fiber Depletion on Interaction between Neocortical Short-Term and Long-Term Plasticity
Introduction: The primary somatosensory cortex has an important role in nociceptive sensory-discriminative processing. Altered peripheral inputs produced by deafferentation or by long-term changes in levels of afferent stimulation can result in plasticity of cortex. Capsaicin-induced depletion of C-fiber afferents results in plasticity of the somatosensory system. Plasticity includes short-term...
متن کاملEffect of Prenatal Stress and Serotonin Depletion on Postnatal Serotonin Metabolism in Wistar Rats
Prenatal stress in rats results in structural, physiological and behavioral alterations that persist in adulthood. Serotonin (5-HT) is an important neurotransmitter known to be involved in these prenatal stress-induced behavioral alterations. The aim of the study was to investigate the effects of interrupted synthesis of 5-HT and immobilization stress during different gestational period on brai...
متن کاملElectrophysiological study of amygdale-induced changes in the excitability of CA1 hippocampal pyramidal neurons in male adult rats
Introduction: Many studies have shown that amygdala kindling produces synaptic potentiation by induction of changes in the neuronal electrophysiological properties and inward currents both in epileptic focus and in the areas which are in connection with the epileptic focus and have important role in seizure development and progression such as hippocampal CA1 region. However, cellular mechani...
متن کاملUnilateral Hypothalamus Inactivation Prevents PTZ Kindling Development through Hippocampal Orexin Receptor 1 Modulation
Introduction: Epilepsy is a neural disorder in which abnormal plastic changes during short and long term periods lead to increased excitability of brain tissue. Kindling is an animal model of epileptogenesis which results in changes of synaptic plasticity due to repetitive electrical or chemical sub-convulsive stimulations of the brain. Lateral hypothalamus, as the main niche of orexin neurons ...
متن کاملMorphine Consumption During Lactation Impairs Short-Term Neuronal Plasticity in Rat Offspring CA1 Neurons
Background: Facing environmental factors during early postnatal life, directly or indirectly via mother-infant relationships, profoundly affects the structure and function of the mammals’ Central Nervous System (CNS). Objectives: This study aimed to evaluate the effect of morphine consumption during the lactation period on short-term synaptic plasticity of the hippocampal Cornu Ammonis 1 (C...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 22 12 شماره
صفحات -
تاریخ انتشار 2002